Adaptive stock trading with dynamic asset allocation using reinforcement learning
نویسندگان
چکیده
Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dynamic asset allocation in a reinforcement-learning framework. The proposed asset allocation strategy, called meta policy (MP), is designed to utilize the temporal information from both stock recommendations and the ratio of the stock fund over the asset. Local traders are constructed with pattern-based multiple predictors, and used to decide the purchase money per recommendation. Formulating the MP in the reinforcement learning framework is achieved by a compact design of the environment and the learning agent. Experimental results 0020-0255/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2005.10.009 * Corresponding author. Tel.: +82 2 88
منابع مشابه
Dynamic Asset Allocation Exploiting Predictors in Reinforcement Learning Framework
Given the pattern-based multi-predictors of the stock price, we study a method of dynamic asset allocation to maximize the trading performance. To optimize the proportion of asset to be allocated to each recommendations of the predictors, we design an asset allocator called meta policy in the Q-learning framework. We utilize both the information of each predictor’s recommendations and the ratio...
متن کاملLearning to trade via direct reinforcement
We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting mo...
متن کاملOptimal Asset Allocation using Adaptive Dynamic Programming
In recent years, the interest of investors has shifted to computerized asset allocation (portfolio management) to exploit the growing dynamics of the capital markets. In this paper, asset allocation is formalized as a Markovian Decision Problem which can be optimized by applying dynamic programming or reinforcement learning based algorithms. Using an artificial exchange rate, the asset allocati...
متن کاملPerformance Functions and Reinforcement Learning for Trading Systems and Portfolios
We propose to train trading systems and portfolios by optimizing objective functions that directly measure trading and investment performance. Rather than basing a trading system on forecasts or training via a supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement learning (RRL) algorithms. The performance functions that we consider for rei...
متن کاملDynamic Asset Allocation for Stock Trading Optimized by Evolutionary Computation
Effective tradingwith given pattern-based multi-predictors of stock price needs an intelligent asset allocation strategy. In this paper, we study a method of dynamic asset allocation, called the meta policy, which decides how much the proportion of asset should be allocated to each recommendation for trade. The meta policy makes a decision considering both the recommending information of multi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 176 شماره
صفحات -
تاریخ انتشار 2006